Abstract:
High-resolution imaging spectroscopy in the soft x-ray waveband (0.1-10 keV) is an essential tool for probing the physics of the x-ray universe. Unique line diagnostics available in this waveband allow transformative scientific observations of a wide array of sources. For example, measurements of turbulence in the intra-cluster medium of galaxy clusters can be used to calibrate hydrodynamic simulations used in cosmology; and measurements of outflow processes from supermassive black holes may identify the key mechanism that regulates the co-evolution of host galaxies and their central black holes. I will introduce the microcalorimeter, a low-temperature detector capable of x-ray photon counting with high spectral resolution, and discuss observations of the Perseus Cluster made using our microcalorimeter instrument that launched aboard the Japanese-led Hitomi (Astro-H) mission in 2016. I will discuss our recent advances using transition-edge-sensor (TES) microcalorimeters and identify areas in detector, readout, and instrument development that are needed for next-generation instrumentation for space- and laboratory-based experiments. Techniques and challenges will be compared to those of envisaged cryogenic CMB and direct dark matter detection experiments.