ABSTRACT:
A robust detection of neutrino masses is avowedly among the key goals of several upcoming Cosmic Microwave Background (CMB) and Large-Scale Structure (LSS) surveys. In this talk, I will describe recent progress in neutrino cosmology on three fronts. Firstly, I will illustrate the wealth of information on the sum of the neutrino masses obtainable from current cosmological probes, focusing on LSS data. Current upper limits begin favoring the normal neutrino mass ordering, emphasizing the need to develop statistical tools for quantifying this preference. Next, I will discuss galaxy bias as a limitation towards fully capitalizing on neutrino information hidden in LSS data, proposing a method for calibrating the scale-dependent galaxy bias using CMB lensing-galaxy cross-correlations. Moreover, in massive neutrino cosmologies the bias as usually defined is scale-dependent even on large scales: neglecting this effect will lead to incorrectly inferred parameters. Finally, I will take on a different angle and discuss degeneracies between neutrinos and other cosmological parameters. I will show how in certain physically motivated dynamical dark energy models the neutrino mass upper limits tighten instead of broadening, discussing implications for future laboratory determinations of the mass ordering. I will also discuss how neutrino unknowns affect constraints on inflationary models.